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Abstract

Direct numerical simulation is utilized to generate statistics in particle-laden homogeneous plane
strain turbulent ¯ows. Assuming that the two-phase ¯ow is dilute (one-way coupling), a variety of cases
are considered to investigate the e�ects of the particle time constant. The carrier phase is incompressible
and is treated in the Eulerian frame whereas the particles are tracked individually in a Lagrangian
frame. For small particle Reynolds numbers, an analytical expression for the particle mean velocity is
found, which is di�erent from the ¯uid one, and the dispersed phase is shown to be homogeneous. This
is not the case for particles with large Reynolds numbers and no statistics involving particle ¯uctuating
velocity is presented for large particles. The results show that the root mean square (r.m.s.) of the
particle velocity in the squeezed direction exceeds that of the ¯uid in the same direction and increases
with the particle time constant. The mean velocity gradient component in the elongated direction has
the opposite e�ect, that is the r.m.s. of the particle velocity is decreased below that of the ¯uid in this
direction. Further, the dispersed phase exhibits a larger anisotropy than the ¯uid phase, and its
anisotropy increases with the particle inertia. Dispersion is shown to depend strongly on the injection
location and quanti®ed dispersion results show that increasing the injection location coordinates in the
strained directions increases the dispersion. 7 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Analytical treatment of two-phase turbulent ¯ows has received a great deal of attention in
recent years, due mainly to extensive technological applications (Faeth, 1987; Crowe et al.,
1996). With the increase of interest in mathematical modeling of these ¯ows, however, there
has been associated a growing demand for experimental and numerical studies that could lead
to a more profound physical understanding, in addition to a reliable data bank for model
validation. It is now widely accepted that the performance of turbulence models must be
assessed in various simple ¯ow con®gurations before they can be applied to complex ¯ows for
which the experimental data are very scarce, if not impossible. During the past two decades
direct numerical simulation (DNS) has emerged as a viable means for generating accurate and
detail information in turbulent ¯ows with simple geometries. In our previous works (see e.g.
Mashayek et al., 1997, 1998; Mashayek, 1998) we have utilized DNS for the investigation of
particle-laden isotropic and homogeneous shear turbulent ¯ows. Our experience in
implementing the DNS results for both development and assessment of turbulence models has
also been very encouraging (Mashayek et al., 1998; Mashayek, 1999). In the present work we
apply DNS to another mode of distortion, i.e. the irrotational plane strain ¯ow.
Direct numerical simulation of particle-laden turbulent ¯ows has been pioneered by Riley

and Patterson (1974) and then followed by many others (see e.g. McLaughlin, 1989; Wang and
Maxey, 1993; Brooke et al., 1994; Pan and Banerjee, 1996; Ling et al., 1998; Miller and Bellan,
1999). Although none of the previous studies have considered the two-phase plane strain
turbulent ¯ow, the single-phase plane strain ¯ow has been studied somewhat in detail; an
extensive review is not intended here, instead we refer to Lee and Reynolds (1985). Numerical
simulations of plane strain ¯ows are performed by Kwak et al. (1975) using large eddy
simulations (LES), and by Rogallo and Moin (1984) using DNS. Lee and Reynolds (1985)
perform DNS to study the structure of homogeneous turbulence subject to irrotational strains
and relaxation. They consider plane strain, axisymmetric contraction and expansion, and
secondary plane strain after the axisymmetric strains, and ®nd that in a distorting turbulent
¯ow the turbulence ®eld continuously evolves toward an asymptotic state which is mainly
determined by the strain rate imposed during distortion. The turbulent vorticity ®eld is found
to be essential for the anisotropy in the turbulent velocity ®eld. For turbulent ¯ows relaxing
from strains, they show that the small-scale anisotropies relax rapidly at ®rst and then step
with the large-scale anisotropy (locking of relaxation rate). The study by Lee and Reynolds
(1985) constitutes the basis for the simulation of the carrier phase in the present study.
While the physical understanding of particle-laden plane strain turbulent ¯ows is the main

objective of this work, issues pertaining to modeling of two-phase ¯ows are also considered. To
that end, DNS results are utilized to produce statistics which may later be implemented for
model validations. Due to the anisotropy of the ¯ow, these statistics could be very valuable for
verifying recent models which take the e�ects of anisotropy into accounts (see e.g. Zhou, 1993;
Mashayek et al., 1998). Plane strain is a simple fundamental ¯ow and is a direct model for
¯ow along a stagnation streamline, ¯ow through a contraction, etc., and is an approximate
model for irrotational ¯ows in general. Due to these features, plane strain has been,
traditionally, one of the ¯ows extensively utilized for model validation in the context of single-
phase turbulent ¯ows. In the case of two-phase ¯ows, another feature which distinguishes plane
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strain from other geometries currently feasible by DNS, is the presence of a mean velocity
di�erence between the two phases. This allows us to investigate the e�ects of `crossing
trajectories' while the homogeneity of the ¯ow can be used to calculate accurate statistics using
samples from the `entire' solution domain. Therefore, by considering plane strain turbulent
¯ows, not only one can investigate the e�ects of the mean velocity gradients, similar to those
observed in turbulent shear ¯ows (Liljegren, 1993; Wen et al., 1992; Simonin et al., 1995;
Taulbee et al., 1999), but also the e�ects of a slip velocity between the particle and its
surrounding ¯uid may be studied. The latter e�ects can be compared to the e�ects of gravity in
isotropic turbulent ¯ows (Maxey, 1987; Wang and Maxey, 1993), which involve the crossing-
trajectories e�ect (Yudine, 1959) and the associated `continuity e�ect' (Csanady, 1963). Finally,
due to the presence of a mean velocity di�erence between the phases, plane strain ¯ow can be
used to demonstrate the compressibility of the dispersed phase, a feature again not present in
the DNS of homogeneous shear ¯ow. In Sections 2 and 3 the formulation of the carrier and
the dispersed phases is described, followed by an overview of the numerical simulations in
Section 4. The results of the simulations are presented and discussed in Section 5. A summary
and some concluding remarks are provided in Section 6.

2. Description of the carrier phase

This work deals with the dispersion of solid particles in a homogeneous plane strain
turbulent ¯ow. It is assumed that the two-phase ¯ow is dilute, thus the e�ects of the particles
on the carrier phase are neglected (i.e. one-way-coupling). The carrier phase is incompressible
and is treated in the Eulerian frame whereas the particles are tracked in a Lagrangian manner.
The continuous carrier phase is assumed to be a Newtonian ¯uid with constant density �rf�
and viscosity �m). With the assumption of one-way coupling, the transport of the carrier phase
is not in¯uenced by the presence of the particles, and is described via the Eulerian continuity
and momentum equations:

@Ûj

@xj
� 0,

@Ûi

@t
� @

@xj

�
ÛiÛj

�
� ÿ @P̂

@xi
� 1

Re0

@ 2Ûi

@xj@xj
, �2:1�

where ^ denotes the instantaneous variable, x i and t are the spatial and temporal coordinates,
respectively, and Ûi and P̂ indicate the ¯uid instantaneous velocity and pressure, respectively.
All the variables are normalized by the reference length �L0), density �r0), and velocity �U0�
scales. The length scale is conveniently chosen such that the normalized volume of the
simulation box is �2p�3, and the ¯uid density is used as the scale for density. The velocity scale
is found from the box Reynolds number, Re0 � r0U0L0=m (determination of Re0 is explained in
Section 4).
To con®gure the plane strain ¯ow, the carrier phase is subjected to a uniform mean strain in

two directions such that: Ûi�Sx1di1ÿSx2di2�ui, where dij is the Kronecker delta function and
ui is the carrier phase ¯uctuating velocity. The magnitude of the imposed strain is given by S �
@U1=@x1�ÿ@U2=@x2�constant, where Ui � hÛii denotes the Eulerian ensemble-mean (denoted
by h i) velocity. The geometry (Fig. 1) is de®ned by the Cartesian coordinates x1 (stretched
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direction), x2 (squeezed direction), and x3 (invariant direction). With this mean velocity
gradient, Lee and Reynolds (1985) show that the turbulence is homogeneous. Such ¯ow is, in
concept, unbounded, however, in numerical simulations a ®nite domain may be considered by
applying periodic boundary conditions which allows utilization of the Fourier spectral method.
This is accomplished by solving the governing equations for ¯uctuating velocities on a grid
which deforms with the mean ¯ow. This transformation has been discussed in detail by
Rogallo and Moin (1984) and is only summarized here. A computational (deforming)
coordinate system, x 0i , is related to the ®xed (non-deforming) system through x 0i � Bij�t�xj

where the transformation tensor is de®ned as:

Bij�t� �
0@B0

11exp� ÿ St� 0 0
0 B0

22exp�St� 0
0 0 B0

33

1A, Bij�0� �
0@B0

11 0 0
0 B0

22 0
0 0 B0

33

1A: �2:2�

Applying the transformation, the governing equations for the carrier phase in the deforming
coordinate system are expressed as:

Bji
@ui
@x 0j
� 0,

@ui
@t 0
�Ui, juj � Bmj

@�uiuj�
@x 0m

� Bmi
@p

@x 0m
� BmjBnj

Re0

@ 2ui
@x 0m@x 0n

: �2:3�

The computational grid is attached to the deforming frame, and a typical node N is
characterized by a triplet of integers (i, j, k ) at any time t (Fig. 1). The coordinates of the grid
point in the moving system are constant in time, that is:

x 01�t� � x 01�0� � B0
11iD, x 02�t� � x 02�0� � B0

22jD, x 03�t� � x 03�0� � B0
33kD, �2:4�

Fig. 1. Computational domain for plane strain ¯ow at times t = 0 and t.
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where D is the grid spacing and is identical for all three directions. This implies that the new
vector basis �~e 0i � is a function of time:

~e
0
1�t� �

exp�St�
B0

11

~e1, ~e
0
2�t� �

exp� ÿ St�
B0

22

~e2, ~e
0
3�t� �

1

B0
33

~e3: �2:5�

Therefore, ~e
0
i is not a normal basis for the usual norm associated with the inertial frame (see

Fig. 1). We note that the x3-direction is, however, invariant under this transformation �B33�t� �
B0

33 � 1�: There is indeed no mean strain and no mean velocity along this axis, and x 03�t� �
x3�t� � x3�0� and ~e

0
3�t� � ~e3�t� � ~e3�0�: It should also be emphasized that by solving Eq. (2.3),

we obtain the ¯uctuating velocity components ui in the inertial coordinate system. For the
purpose of this study, there is no need to solve u 0i � Bijuj for the velocity vector in the moving
frame.

3. Description of the dispersed phase

The solid particles are assumed to be spherical with diameter smaller than the smallest
length scale of the turbulence. Since the volume fraction of the dispersed phase is small, the
particle±particle collisions can be neglected. The particle density is much larger than the ¯uid
density such that only the drag force and inertia are signi®cant to the particle dynamics. With
these assumptions, the Lagrangian equations of motion for the discrete particles reduce to

dX̂i

dt
� V̂i,

dV̂i

dt
� f

tp

�
Û
�
i ÿ V̂i

�
, �3:1�

where X̂i and V̂i are the particle instantaneous position and velocity, respectively. The
superscript � indicates the ¯uid variable evaluated at the particle location. The particle time
constant for Stokesian drag of a spherical particle is de®ned as tp � Re0rpd2

p=18 where rp and
dp are the nondimensional particle density and diameter, respectively. The particle variables are
normalized using the same reference scales as those used for the carrier phase variables. The
parameter f � 1� 0:15Re0:687p describes an empirical correction to Stokesian drag for large
particle Reynolds numbers �Rep�Re0dpjÛ�i ÿV̂ij� and is valid for Rep < 1000 (Wallis, 1969).
For the low-volume-fraction and high-density-ratio particle-laden ¯ow considered here, the

second of Eq. (3.1) can be also viewed as an Eulerian equation for the velocity of the dispersed
phase, derived via either volume averaging (Jackson, 1997) or ensemble averaging (Zhang and
Prosperetti, 1997). Then, the velocity determined at each point in space from the Eulerian
equation can also represent the Lagrangian velocity of a particle whose trajectory passes
through the same point at the same instant in time. In the following we use the Eulerian
representation to discuss the conditions required for homogeneity of the dispersed phase. The
relations governing the mean velocity of the particles are derived using the Lagrangian
equations.
We have seen that the carrier phase is homogeneous and that provided a linear

transformation, periodic boundary conditions can be applied to the turbulent plane strain ¯ow.
The extension of this transformation to the dispersed phase, however, is not straightforward as
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the particles do not have the same mean velocity as that of the carrier phase. To make this
point clear, we consider the mean particle momentum equation derived by ensemble averaging
of the Eulerian form of (3.1):

DVVi

Dt
�� f

tp

�
Û
�
i ÿ V̂i

�
� ÿ� vj

@vi
@xj
� : �3:2�

Here DV

Dt � @
@ t � Vj

@
@x j

, the notation <<>> denotes the ensemble average associated with the
dispersed phase, and Vi ��� V̂i �� and vi are the particle mean and ¯uctuating velocity,
respectively. It is noted that, if U �i stands for the Eulerian mean ¯uid velocity at the particle
position, Vi � U �i is not a solution to Eq. (3.2). As a result, there always exists a relative mean
velocity between the two phases which can result in large particle Reynolds numbers, especially
far from the origin. In the next subsection, we consider particle Reynolds numbers small
enough to set f � 1: With this restriction, we show that an analytical expression can be found
for the particle mean velocity gradient and that the dispersed phase is homogeneous. The more
general case where f � 1� 0:15Re0:687p will be considered in Section 3.2.

3.1. Homogeneous dispersed phase

For small particle Reynolds numbers, letting f � 1 in the averaged particle momentum Eq.
(3.2) leads to:

DVVi

Dt
� 1

tp

�
� Û

�
i � ÿVi

�
ÿ � vj

@vi
@xj
� : �3:3�

Provided that the initial particle velocity ¯uctuation is isotropic and the initial particle mean
velocity is such that Va�0� � s0axa�0� where s0a is a constant �a � 1, 2, 3 with no summation on
Greek indices), then we show that the following propositions are equivalent:

(i) The dispersed phase remains homogeneous.
(ii) The correlation � vj

@vi
@x j
� is identically zero.

(iii) 9sa8tVa�xj, t� � sa�t�xa:

Starting with the homogeneity (i) and isotropic initial condition assumptions, the directionality
of the ¯ow can only depend on the mean velocity gradient tensors Vi, j and Ui, j: Hence, as �
vj
@vi
@x j
� is a vector and represents a directional characteristic of the ¯ow, it has to be zero

(Blaisdell et al., 1991); see Appendix A for a proof.
Next, taking the correlation � vj

@vi
@x j
� to be zero and by substituting � Û

�
i � by the

Eulerian mean velocity for the surrounding ¯uid U �i � Ui, jx j (BarreÂ , 1998 shows that the
di�erence between � Û

�
i � and U �i is small for cases considered in this study), from Eq. (3.3)

we have

DVxi

Dt
� Vi,

DVVi

Dt
� 1

tp

ÿ
Ui, jx j ÿ Vi

�
: �3:4�

These equations are combined to constitute second-order linear equations for xi:
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DV 2

xi

Dt2
� 1

tp

DVxi

Dt
ÿ 1

tp

Ui, jx j � 0, �3:5�

where DV 2

Dt 2
� DV

Dt �D
V

Dt �: Eq. (3.5) are uncoupled and can be easily solved. The solution for i � 1 is

x1 � c1exp�x1t� � c2exp�Z1t�, �3:6�
where

x1 �
ÿ1� ������������������

1� 4Stp

p
2tp

, Z1 �
ÿ1ÿ ������������������

1� 4Stp

p
2tp

: �3:7�

For i � 2, the solution depends on a critical value for the particle time constant:

tpcr
� 1

4S
: �3:8�

For tp < tpcr
the solution is

x2 � c3exp�x2t� � c4exp�Z2t�, �3:9�
where

x2 �
ÿ1� ������������������

1ÿ 4Stp

p
2tp

, Z2 �
ÿ1ÿ ������������������

1ÿ 4Stp

p
2tp

: �3:10�

For tp � tpcr
:

x2 � �c5 � c6t�exp

�ÿt
2tp

�
, �3:11�

and for tp > tpcr
:

x2 �
�
c7cos�ot� � c8sin�ot��exp

�ÿt
2tp

�
, �3:12�

where

o �

����������������tp

tpcr

ÿ 1

r
2tp

: �3:13�

For i � 3, the solution of Eq. (3.5) leads to

x3 � c9exp

�ÿt
tp

�
� c10: �3:14�

In Eqs. (3.6)±(3.14), ci �i � 1, . . . ,10� are integration constants. If tp < tpcr
, the solution in x2-

direction is similar to that in x1-direction. For tp > tpcr
, an oscillatory solution with the
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frequency o is obtained in x2-direction. In this case, the particles, due to their large inertia, are
able to overcome the drag force and cross the x1-axis. Once in the negative x2 side of the
�x1, x2�-plane, the particles are faced with an opposing ¯ow. This results in a signi®cant
increase in the drag force and directs the particles back towards the x1-axis. The mean velocity
of the dispersed phase is determined from the solution for xi, and is given in Appendix B for
the initial condition Va�0� � s0axa�0�: It is observed, from Appendix B, that for any tp and for
any direction there is a function sa�t� such that

Va�t� � sa�t�xa�t�, �3:15�
where sa is a function of time only. This proves that (ii) results in (iii).
Finally, assuming (iii) the mean velocity gradient is de®ned by

Va, b � sa�t�dab �3:16�

and the particle mean velocity is a solution for Eq. (3.4). Therefore, the equation for
¯uctuating velocity can be obtained by subtracting (3.4) from (3.1):

dvi
dt
� 1

tp

ÿ
u�i ÿ vi

�ÿ Vi, jvj: �3:17�

The right-hand side of this Lagrangian equation depicts no explicit dependency on position,
and is translationally invariant. Hence, and since the initial conditions consist of homogeneous
turbulence, any statistical quantities formed from the ¯uctuating velocity will be invariant
under such a transformation and the turbulence will remain homogeneous. This shows the
constraint on the mean velocity gradient (iii) to be su�cient for the maintenance of
homogeneity as stated in (i).
It has been shown that if the turbulence is homogeneous, the vector � vj

@vi
@x j
� is zero ((i)c

(ii)). Also, if this correlation vanishes, we have seen that the particle mean velocity satis®es
Va � sa�t�xa for any t ((ii)c (iii)). Finally, if the particle mean velocity gradient is a function
of time only, then the turbulence remains homogeneous ((iii) c (i)). Consequently the
propositions (i), (ii), and (iii) are equivalent. From this we conclude that if the simulations are
initialized in such a way that the particles ¯uctuating velocity ®eld is isotropic and the particle
mean velocity satis®es Va � s0axa then the turbulence remains homogeneous and the mean
velocity is Va � sa�t�xa, for any t.
The solution for the mean velocity of the dispersed phase in three directions is summarized

in Tables 1±3 for various cases. It is observed that for tp > tpcr
the mean velocity gradient

component in x2-direction remains a periodic function of time, for any s02: For tpRtpcr
,

however, initially imposing s01 � x1, s02 � x2, and s03 � 0 results in

V1 � x1x1, V2 � x2x2, V3 � 0, for any t: �3:18�
We also note that s14x1, s24x2, and s340 for t41: Therefore, x1, x2 and 0 are the stable
solutions for the particle mean velocity gradient components for tpRtpcr

: Furthermore, notice
that initializing the mean velocity ®eld as s01 � Z1, s02 � Z2, and s03 � ÿ1=tp also leads to a
constant mean velocity gradient, sa�t� � s0a: However, this corresponds to an unstable
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Table 1
Particle mean velocity with isotropic initial conditions for ¯uctuations, in x1-direction

V1�t� � s1�t�x 1, s1�0� � s01

Condition on tp Initial condition Solution for V1, 1�t�

any tp s01 6�x1 s1�t� �
Z1exp�Z1t��

s0
1
ÿZ1

x1ÿs01
x1exp�x1t�

exp�Z1t��
s0
1
ÿZ1

x1ÿs01
exp�x1t�

x1 � ÿ1�
�����������
1�4Stp

p
2tp

Z1 �
ÿ1ÿ

�����������
1�4Stp

p
2tp

s01 � x1 s1�t� � x1 � constant

Table 2
Particle mean velocity with isotropic initial conditions for ¯uctuations, in x2-direction

V2�t� � s2�t�x 2, s2�0� � s02

Condition on tp Initial condition Solution for V2, 2�t�

tp < tpcr
s02 6�x2 s2�t� �

Z2exp�Z2t��
s0
2
ÿZ2

x2ÿs02
x2exp�x2t�

exp�Z2t��
s0
2
ÿZ2

x2ÿs02
exp�x2t�

�tpcr
� 1

4S � x2 �
ÿ1� ������������������

1ÿ 4Stp

p
2tp

Z2 �
ÿ1ÿ

�����������
1ÿ4Stp

p
2tp

s02 � x2 s2�t� � x2 � constant

tp � tpcr
s02 6� ÿ 1

2tp
s2�t� �

s0
2
ÿ
�
s0
2
� 1
2tp

�
t

2tp

1�
�
s0
2
� 1
2tp

�
t

s02 � ÿ 1
2tp

s2�t� � ÿ 1
2tp
� constant

tp > tpcr
any s02 s2�t� �

s0
2
� ÿ12tpo �s02�2S�tan�ot�

1�
s0
2
� 1
2tp

o tan�ot�

o �
�����������
4Stpÿ1
p

2tp
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equilibrium solution for Vi, j, and any small perturbation would make the mean velocity of the
dispersed phase to diverge from this solution.
The above discussion indicates that for small Rep the particle mean velocity is known.

Therefore, to calculate the statistics of the dispersed phase in this case, we only need to solve
the ¯uctuating velocity equation in the ®xed coordinates:

dvi
dt
� 1

tp

ÿ
u�i ÿ vi

�ÿ Vi, jvj, �3:19�

with

dX̂i

dt
� vi � sj�t�X̂jdij: �3:20�

It must be noted that the relative mean velocity, and therefore Rep, increases with the distance
from the origin. Thus, the study of the homogeneous dispersed phase is restricted to a ®nal
physical domain surrounding the origin. However, this domain has to be large enough to
encompass the large scales of turbulence. During the present simulations, this requirement is
satis®ed in all three directions and for all the particle time constants considered as the domain
size remains greater than three times the ¯ow integral length scale �l � p

2u 0 2
�1
0

E�k�
k dk with k

and E�k� denoting the wavenumber and the energy spectrum of the carrier phase, respectively)
at any time (see Table 4).

Table 3
Particle mean velocity with isotropic initial conditions for ¯uctuations, in x3-direction

V3�t� � s3�t�x 3, s3�0� � s03

Condition on tp Initial condition Solution for V3, 3�t�

any tp s03 6�0 s3�t� �
exp

�ÿt
tp

�
1�tps03

s0
3

ÿtpexp

�ÿt
tp

�
s03 � 0 s3�t� � 0

Table 4

Variation of the ratio of the carrier phase integral length scale to the dispersed phase computational box size �Li

denotes the box size in the x i-direction) for di�erent particle time constants during the plane strain simulations

tp 0.112 0.225 0.372 0.434

l=L1 0.0474 0.085 0.0504 0.085 0.0524 0.085 0.0574 0.085
l=L2 0.0214 0.183 0.0214 0.229 0.0214 0.275 0.0214 0.366

l=L3 0.0424 0.088 0.0424 0.088 0.0424 0.088 0.0424 0.088
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Fig. 2. Instantaneous particle distribution at various times for (a) tp � 0:1tpcr
and (b) tp � 0:5tpcr

: The prediction of
the theory for the particle-containing box is also shown with dashed lines.
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The validity of the analysis presented in this section for the mean velocity of the dispersed
phase is tested in our numerical simulations by plotting the instantaneous locations of all the
particles at various times. For this purpose, using the ¯uid velocity calculated by DNS (see
Section 4), we integrate the instantaneous (total) particle velocity equation (see Eq. (3.21)
below). The particle distribution obtained in this manner is independent of the above analysis
and is shown in Fig. 2 for two di�erent particle sizes (note that in the ®gure the inverse of the
mean velocity gradient, S, has been used to normalize the time). At the same time, starting
from a mean particle velocity (and its corresponding initial conditions) given by Eq. (3.18), the
temporal evolution of the `particle-containing' box can be predicted analytically. This
prediction is also shown in Fig. 2 and is compared to the particle domain formed by solving
the equation for the instantaneous velocity in the numerical simulation. A close agreement is
observed and only a small portion of particles are dispersed (by turbulence ¯uctuations)
outside the predicted box at the ®nal simulation time. Fig. 2 also shows that the size of the
particle-containing box decreases in time, a phenomenon more visible for larger particles. This
demonstrates the `compressibility' of the dispersed phase which has been captured here by the
plane strain ¯ow.

3.2. Inhomogeneous dispersed phase

When the particle Reynolds number is large, the preceding formulation is not justi®ed. The
correction to drag, f � 1� 0:15Re0:687p , introduces a nonlinear and explicit dependency on

Fig. 3. `Double-averaged' particle mean velocity at three particle locations (t = 0).
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position in the particles equations of motion. Hence the dispersed phase cannot be considered
homogeneous, except in x3-direction. Because of the relatively short length of the domain
along this axis, averaging in x3-direction only is not su�cient to obtain accurate statistics. It is
still possible to increase the number of realizations by repeating the simulation, starting with
di�erent initial conditions. But the number of simulations required to achieve a good accuracy
may be large.
To estimate the number of repetitions of the simulation necessary to compute statistics, 1000

initial turbulent ¯ow ®elds are generated and particle velocities at t � 0 are averaged over cells
in x3-direction. Then the averaging over the number of simulations is performed. For this
estimation, the particle distribution is kept the same for all the repetitions and no particle
mean velocity is imposed, thus the averaged particle velocity should converge to zero. We also
emphasize that the simulations are stopped after the ®rst time step. Consequently, only
statistical errors are estimated, without physical consideration. Fig. 3 shows the `double-
averaged' mean particle velocity as a function of the number of simulations used for averaging,
for three typical particle locations. It is observed that over 100 repetitions of the same
simulation are required in order to achieve a reasonable accuracy in the calculation of the
mean particle velocity. This is not a�ordable with the current computer resources available
(although we expect that statistics evaluated at longer times would provide a faster
convergence due to the dynamics of the turbulence and the velocity correlations). Therefore,
the results of our simulations for large Rep are only used to investigate the dispersion
characteristics of the particles. For inhomogeneous dispersed phase, the particle mean velocity
is not known and we solve the instantaneous particle equations:

dX̂i

dt
� V̂i,

dV̂i

dt
� f

tp

�
Û
�
i ÿ V̂i

�
, �3:21�

in the ®xed coordinates.

4. Overview of simulations

A Fourier pseudospectral method with triply periodic boundary conditions is employed for
the spatial representation of the ¯uid velocity and pressure. All calculations for the carrier
phase are performed in the Fourier space with the exception of the non-linear terms. Aliasing
errors are treated by truncating energies outside of a spherical wavenumber shell having radius���
2
p

N=3, (where N is the number of grid points in any direction) and time advancement is
performed using an explicit second order accurate Adams±Bashford method. Temporal
advancement of the Lagrangian particle equations is also done by the Adams±Bashford
method. In order to evaluate ¯uid variables at the particle locations a fourth-order accurate
Lagrange polynomial interpolation scheme is employed.
The initial conditions for the plane strain runs are obtained by preliminary simulations of

homogeneous decaying turbulence. The initial (random) velocity ®eld for the carrier phase, in
decaying simulations, is generated in the Fourier space. The method of initialization is the
same as that used by Rogallo and Moin (1984) and Lee and Reynolds (1985). In this method,
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one supplies the resolution of the energy-containing eddies �NL� and the smallest eddies �NZ�
in a given computational domain. Then the energy spectrum function and the box Reynolds
number, Re0, are determined. The energy spectrum is constructed as:

E�k� �

8>><>>:
gk2 if k0RkRkp

gk
11
3

p k
ÿ5
3 if kpRkRkc

0 otherwise

�4:1�

where g and kp are determined from the values of NL, NZ and N (Lee and Reynolds, 1985).
Here, we choose NL � 5:7, NZ � 0:35 and N � 96, leading to g � 2:655� 10ÿ4, kp � 11 and
Re0 � 232:
The computational domain is elongated (shortened) in the direction of positive (negative)

mean strain rates during plane strain runs (Fig. 1). Therefore, if we begin with isotropic mesh
con®guration with three identical sides, the mesh aspect ratio, de®ned as the ratio of the
longest side of the mesh to the shortest, increases in time. As the mesh aspect ratio increases, it
becomes di�cult to resolve turbulence equally in every direction. Hence, computation must be
stopped at relatively short times. To allow the simulations continue for a longer time, we
implement a predistorted initial mesh with short side in the direction to be elongated by
positive mean strain rate and vice versa. Therefore, the mesh aspect ratio for the decay of
isotropic turbulence is 1/2:2:1, and the simulations are conducted within the domain 0Rx1Rp,
0Rx2R4p, 0Rx3R2p: The particles are initially distributed randomly throughout this
domain, and are speci®ed to have zero velocity di�erence with the local ¯uid �vi �t � 0� �
u�i �t � 0��: The decaying simulations are stopped when the higher-order statistics
approximately reach their asymptotic values. Then the plane strain simulations are started,
with the turbulent velocity ®elds and the particle distributions taken from the decaying

Table 5
Parameters and initial conditions used in the plane strain simulations

Carrier phase

Zkkmax tk vk u ' l q 2 E ReT S ~S
1.40 0.225 0.138 0.198 0.268 0.118 0.084 39 0.739 1.0

Dispersed phase

tp tp=tk tp=tpcr
v ' q 2

p � Rep � V1, 1 V2, 2 V3, 3 statistics

0.112 0.5 0.33 0.199 0.119 0.05 0.686 -0.739 0 yes
0.225 1 0.66 0.199 0.119 0.12 0.645 -0.739 0 yes
0.372 1.65 1.09 0.197 0.117 0.24 0.603 -0.739 0 yes

0.434 1.9 1.28 0.198 0.116 0.29 0.588 -0.739 0 yes
0.507 2.2 1.5 - - 0.36 0.572 -0.739 0 no
0.675 3 2 - - 0.53 0.541 -0.739 0 no
1.126 5 3.3 - - 1.00 0.479 -0.739 0 no

1.691 7.5 5 - - 1.58 0.428 -0.739 0 no
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turbulence runs. For the carrier phase, the initial aspect ratio for the computational domain is

1/2:2:1 �B0
11�2, B0

22�1=2, B0
33�1�, and at the ®nal simulation time this becomes 2:1/2:1 �B11 �

1=2, B22 � 2, B33 � 1�: That is, if we de®ne the reference total strain as c � exp�St�, each strain

run is performed until the reference total strain reaches approximately 4.

For a given mean strain rate (S = 0.739), we have considered eight cases to investigate the

e�ects of the particle time constant, using 1:2� 105 particles on 963 grid points. For all the

simulations rp � 721:8 is used. Primarily, we performed several simulations of the decaying

isotropic turbulence, in order to establish initial conditions for the plane strain runs. The ¯ow

parameters considered in the plane strain simulations are given in Table 5, along with

additional information pertaining to initial conditions. In this table, kmax denotes the highest

wavenumber resolved after dealiasing, Zk, tk and vk represent the Kolmogorov length, time and

velocity scales, respectively, and u 0 is the rms of the ¯uctuating velocity. Also, q2 � 2k � huiuii
is twice of the ¯uid turbulence kinetic energy, E � 2nhsijsiji is the mean dissipation, where the

symmetric rate of strain tensor is sij � �@ui=@xj � @uj=@xi �=2, ReT � q4=En denotes the

turbulence Reynolds number, and ~S � Sq2=E is the mean strain rate parameter � ~S is the ratio

of the time scale of distortion of turbulence to that of the mean ¯ow). To demonstrate the

accuracy of the single phase ¯ow simulation, a comparison is provided in Table 6 between

some of the present DNS results with those from the DNS of Rogallo and Moin (1984) and

Lee and Reynolds (1985) and the experiment of Tucker and Reynolds (1968). In Table 6, a
f
ij �

huiuji=kÿ 2=3 dij is the ¯uid anisotropy tensor.

Table 5 also provides a listing of the cases considered to study the e�ects of the particle time

constant. For each case, it is indicated whether or not statistics of particle ¯uctuating velocity

are calculated, that is whether the particle Reynolds numbers remain small enough during the

simulation to consider the dispersed phase to be homogeneous. The corresponding initial

values of the r.m.s. of the dispersed phase ¯uctuating velocity, v 0, and twice of the turbulence

kinetic energy, q2
p � 2kp �� vivi � (for the homogeneous dispersed phase cases), and the

averaged particle Reynolds number � Rep � are given. The mean velocity gradient of the

dispersed phase is initially imposed as:

Table 6
Comparison of the present single phase ¯ow results with previous simulations of Lee and Reynolds (1985) (LR) and

Rogallo and Moin (1984) (RM) and the experiments of Tucker and Reynolds (1968) (TR)

Present results LR RM TR

c 4.0 4.0 4.0 4.0
ReT 61 69 241 1000
~S 1.0 1.0 1.0 0.9

a
f
11 -0.507 -0.516 -0.433 -0.391

a
f
22 0.496 0.538 0.508 0.316

a
f
33 0.015 -0.003 -0.036 0.083
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Vi, j�0� �
0@ x1 0 0
0 ÿS 0
0 0 0

1A:
In this manner, for homogeneous dispersed phase Vi; j�t� � Vi; j�0� � constant for any t, if i6�2
and j 6�2: Also, V2; 2�t, tp1�RV2; 2�t, tp2� if tp1 < tp2 for the range of time considered in the
present simulations. Notice that, to keep the particle Reynolds number small, in both
homogeneous and inhomogeneous dispersed phase cases, the mean velocity di�erence in x2-
direction is zero when the plane strain runs start.

5. Results

In this section, we present the results of the simulations for both homogeneous and
inhomogeneous dispersed phase. As mentioned earlier, only for homogeneous dispersed phase
we are able to calculate the statistics that require the knowledge of the mean velocity of the
dispersed phase. These include the velocity autocorrelation coe�cient, the Reynolds stress, the
turbulence kinetic energy, the anisotropy tensor, and the mean relative ¯uctuating velocity.

Fig. 4. E�ect of tp on the particle velocity autocorrelation and comparison with the ¯uid velocity autocorrelation;
(a) in the elongated direction x 1, (b) in the shortened direction x 2, (c) in the spanwise direction x 3:
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First, we discuss the results for cases in which the dispersed phase can be considered
homogeneous. For these cases, the Lagrangian autocorrelation coe�cient of the particle
velocity is de®ned as:

Raa�t� � � va�t0�va�t0 � t� �
� v2a �t0� �

1
2� v2a �t0 � t� �1

2

, a � 1, 2, 3 �5:1�

where t0 is the time at which we start computing the Lagrangian statistics. Since the turbulence
is non-stationary, the value of Raa depends on the choice of t0: The total time in our plane
strain simulations is somewhat short, therefore, we choose to take t0 � 0 which is the starting
time for plain strain simulations. The autocorrelation coe�cient for various tp values are
shown in Fig. 4 along with that of the massless ¯uid particle. It is observed that, for short
dispersion times, the `memory' of the particle to its previous velocity is increased as the particle
inertia increases, thus increasing the autocorrelation coe�cient. For tp > tpcr

�� 0:338� the
magnitude of the particle autocorrelation exceeds that of the ¯uid particle. At later times, the
autocorrelation of these heavier particles cross over that of the ¯uid such that at long times the
particle velocities are less correlated than the ¯uid velocities. This is again due to the particle
inertia. At long times, the solid particle continues to interact with new ¯uid elements and thus
Raa decays at a faster rate than that of the ¯uid. In all three directions, a crossing is observed
for the autocorrelation curves of various tp: The crossing occurs sooner in the x2-direction and
for the autocorrelation curves of tp � 0:112 and tp � 0:225: This suggests that particles with
high inertia change their surrounding ¯uid more rapidly and tend to lose correlation with their
previous velocity faster than lighter particles. In plane strain ¯ows, the particle mean velocity
depends on the particle time constant and in our simulations the relative mean velocity
between the particle and its surrounding ¯uid increases with the increase of tp: Thus particles
with higher inertia are more subjected to `crossing-trajectories' e�ects than lighter ones, and the
decay rate of Raa increases with tp at long times causing the autocorrelation to become smaller
for larger particle time constant. Fig. 4 also shows that the autocorrelation of the particle
velocity in the shortened direction �x2� is larger than that in both elongated �x1� and spanwise
�x3� directions.
Another interesting phenomenon observed in Fig. 4 is that the variation of the

autocorrelation with the particle time constant is not monotonic. For example, the long time
value of R11, in Fig. 4a, decreases with the decrease of tp to 0.225 and then increases with
further decrease of tp: This could be due to the crossing-trajectories e�ects and the preferential
distribution of the particles in high-strain-rate regions of the ¯ow. A similar phenomenon is
observed by Wang and Maxey (1993) for the settling velocity of particles in the presence of
gravity in isotropic turbulence. They observe a peak value in the variation of the `increase in
the particle mean settling velocity' when the particle time constant is close to the Kolmogorov
time scale of the turbulence. It should also be noted that the ¯ow considered here is non-
stationary and the dispersed phase exhibits compressibility e�ects and there is a signi®cant
variation in the mean concentration in time. These could also contribute to the non-monotonic
behavior observed in the ®gure and demand more future exploration.
The temporal variation of the normal Reynolds stresses of the ¯uid �hu2

a i� and particles
�� v2a ��, and the ¯uid±particle velocity covariance �� u�ava �� are shown in Fig. 5. The

C. BarreÂ et al. / International Journal of Multiphase Flow 27 (2001) 347±378 363



particle Reynolds stress in x2-direction �� v22 �� is strongly a�ected by the mean velocity
gradient. It is considerably larger than the corresponding ¯uid-particle velocity covariance
�� u�2v2 ��, and exceeds the ¯uid Reynolds stress �hu2

2 i�: These features are even more
pronounced when the particle time constant increases. It is also observed that an increase of
particle inertia decreases the ¯uid±particle velocity covariance, below the value of hu2

2 i, due
mainly to strong decorrelation of the ¯uid and particle velocities at larger tp: These results are
in general agreement with theoretical results of Reeks (1993) and Liljegren (1993) and
numerical results of Mashayek (1998) regarding the e�ect of a mean ¯uid velocity gradient on
the streamwise particle velocity variance in shear ¯ows. However, the non-zero mean ¯uid
velocity gradient component in the stretched direction �U1, 1 � S� does not a�ect � v21 �
similarly to that in the squeezed �x2� direction. In the analysis of Liljegren (1993) the term

Fig. 5. Temporal evolution of the Reynolds stress components of the ¯uid and the particles and the ¯uid-particle
covariance. Hollow and ®lled symbols refer to the ¯uid and the ¯uid-particle, respectively. (a) tp � 0:112, (b)

tp � 0:225, (c) tp � 0:372, and (d) tp � 0:434:
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responsible for the increase of the streamwise particle velocity variance above the ¯uid one is

proportional to ÿV1, 2 � v1v2 � which is positive in the case of shear ¯ow. Here, the ¯uid

mean velocity gradient results in a positive particle mean velocity gradient component V1, 1:
Thus, the term ÿV1, 1 � v21 � in the transport equation of � v21 � behaves like a dissipation

and decreases the particle Reynolds stress in x1-direction below that in x3-direction. Moreover,

V1, 1 is larger than U1, 1 and increases with particle inertia. This could explain that the particle

velocity variance in the elongated direction is smaller than the ¯uid one and decreases with

increasing tp (although a direct analogy with Liljegren (1993) theory is not attempted here). In

the spanwise direction, the particle velocity variance is not directly a�ected by the mean

velocity gradients and consistent with the results for shear ¯ow in the normal or spanwise

Fig. 6. Temporal variations of (a) the normalized turbulence kinetic energy for the ¯uid and the particles, and (b)

the production and drag dissipation terms appearing in the particle turbulence kinetic energy Eq. (5.2).
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directions, it remains below the corresponding ¯uid turbulent stresses and, given su�cient
development time, becomes nearly equal to the ¯uid±particle velocity covariance. An inspection
of Fig. 5 shows that the particle velocity variance in the spanwise direction decreases when the
particle time constant increases.
The e�ects of the particle inertia on the evolution of the particle turbulence kinetic energy

appear in Fig. 6a. All the kinetic energies shown in this ®gure are normalized by k0, the
turbulence kinetic energy of the ¯uid at the initial time. It is observed that during the early
dispersion times, the normalized particle turbulence kinetic energy is larger than the ¯uid one,
and increases with the increase of particle inertia. Later, the ¯uid turbulence kinetic energy
starts to level o� and kp continues to decay at a faster rate than k. Because the decay rate of
kp is larger for smaller inertia particles, the time at which the particle turbulence kinetic energy
decreases below that of the ¯uid is shorter for smaller particles. At long dispersion times, the
particle turbulence kinetic energy increases over that of the ¯uid for all cases. Increasing the
particle time constant results in a larger growth rate for the particle turbulence kinetic energy
for long times.
To explain the trends observed in Fig. 6a, we consider the transport equation for the particle

turbulence kinetic energy:

Fig. 7. Temporal variations of the anisotropy tensor components of the ¯uid and the particles.
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DVkp

Dt
� ÿÿV1, 1 � v21 � �V2, 2 � v22 �

�� 1

tp

ÿ� u�i vi � ÿ2kp

�
: �5:2�

The expression ÿ�V1; 1 � v21 � �V2; 2 � v22 �� on the right-hand side of Eq. (5.2) represents a
production by the mean velocity gradient, whereas the last two terms indicate the drag
contribution. The temporal evolution of these terms in Fig. 6b indicates that for all the cases
the term due to drag always acts like a dissipation and tends to counterbalance the production.
During the initial times, the dissipation overcomes the production and the particle turbulence
kinetic energy experiences a rapid decay, similar to that of the ¯uid, as shown in Fig. 6a. At
longer times, the dominance of the drag dissipation over the production is overturned. The
time of overturning becomes slightly longer as the particle time constant increases. Fig. 6b also
shows that, at long times, the increase of tp results in the increase of both the production and
the dissipation. However, the increase of the production with the particle time constant occurs
with a faster rate than that of the dissipation. As a result, the growth rate of the particle
turbulence kinetic energy is increased with the increase of the particle time constant, in contrast
to initial times that the decay rate of kp decreases with the increase of tp:
Fig. 7 illustrates the temporal variations of the diagonal (normal) components of the

anisotropy tensor for both the carrier and the dispersed phases. Here, the anisotropy tensor for
the dispersed phase, a

p
ij �� vivj � =kp ÿ 2=3dij, is de®ned similarly to that of the carrier phase.

All of the o�-diagonal (shear) components are zero in plane strain ¯ow. Due to initial (nearly)
isotropic conditions, all the components are approximately equal to zero at t � 0 (although we
note a slight anisotropy generated during the decaying turbulence runs). In time, the action of
the mean velocity gradient increases the energy component in the shortened direction (x2, with
a negative mean velocity gradient), and decreases the energy in the elongated direction (x1,
with a positive mean velocity gradient). In the absence of a production mechanism, the
component in x3-direction tends to decay. However, the ¯uid pressure redistributes the energy
among the components, and after some initial time equilibrium values are approached. A
similar behavior is also observed for the dispersed phase. It is clearly observed that the
anisotropy of the dispersed phase is substantially larger than that of the ¯uid. This is due
mainly to the lack of a mechanism similar to pressure in the ¯uid phase by which energy may
be exchanged among various components in the dispersed phase. The extent of the anisotropy
of the carrier phase is, however, bounded at long times by the action of the drag force. The

Table 7
Number of time constants required by the particles to reach the peak in � �u�i ÿ vi � 2 � =� �u�i � 2 �

tp tpeak=tp

i = 1 i = 2 i = 3

0.112 3.38 3.01 3.38
0.225 2.09 2.16 2.09
0.372 1.29 1.53 1.29

0.434 1.15 1.49 1.15
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variation of the anisotropy tensor components with the increase of the particle inertia is in

agreement with previous results for homogeneous turbulent shear ¯ows Ð the anisotropy in

the particle phase increases with the increase of the particle time constant (Taulbee et al., 1999;

Mashayek, 1998).

The mean-square relative ¯uctuating velocity, � �u�i ÿ vi �2 �, is a measure of the deviation

of the particle velocity ¯uctuation from that of the surrounding ¯uid. The temporal variation

of the mean-square relative velocity is also used to determine the time at which the particles

become independent of their initial conditions Ð Riley and Patterson (1974) chose the time of

occurrence of the peak of � �u�i ÿ vi �2 � as the time at which the particles have adjusted to

decaying turbulence. Fig. 8 shows the variations of this quantity normalized by the

surrounding ¯uid mean-square velocity � �u�i �2 � for various tp: The evolution of � �u�i ÿ
vi �2 � =� �u�i �2 � is similar in the three directions and the peak time, tpeak, is approximately

the same for i = 1, 2, and 3. As expected from the results for Lagrangian autocorrelations, for

increasing tp the in¯uence of the initial condition of the particle velocity is more signi®cant and

Fig. 8. Temporal evolution of the mean-square relative ¯uctuating velocity; (a) in the elongated direction x 1, (b) in

the shortened direction x 2, (c) in the spanwise direction x 3:
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tpeak is larger. However, if tpeak is normalized by tp, we observe that the lighter the particle, the
larger tpeak=tp: The number of time constants required for each particle to reach the peak in
various directions is shown in Table 7. In general, the magnitude of � �u�i ÿ vi �2 � =�
�u�i �2 � increases with the increase of tp due to the larger slip velocity experienced by the
heavier particles. It is interesting to note that for long dispersion times and for all the cases
considered, we have:

� ÿ
u�1 ÿ v1

�2�
� ÿ

u�1
�2� R

� ÿ
u�3 ÿ v3

�2�
� ÿ

u�3
�2� , �5:3�

whereas

� ÿ
u�2 ÿ v2

�2�
� ÿ

u�2
�2� R

� ÿ
u�3 ÿ v3

�2�
� ÿ

u�3
�2� , �5:4�

Fig. 9. Comparison of the mean-square relative ¯uctuating velocity for di�erent initial conditions for the particle
mean velocity; (a) in the elongated direction x 1, (b) in the shortened direction x 2, (c) in the spanwise direction x 3:
Thick lines for V2, 2�0� � ÿS and thin lines for V2, 2�0� � x2:
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for tp < tpcr
, and

� ÿ
u�2 ÿ v2

�2�
� ÿ

u�2
�2� r

� ÿ
u�3 ÿ v3

�2�
� ÿ

u�3
�2� , �5:5�

for tp > tpcr
:

Although it is not certain that the particles are independent of their initial conditions once
the mean-square relative velocity has reached a maximum value, the occurrence of the peak
time does provide an indication that the particles are no longer signi®cantly in¯uenced by their
initial conditions. Fig. 9 compares the present results (thick lines) for the evolution of mean-
square relative velocity of smaller particles �tp � 0:112 and 0.225) with the results (thin lines)
from similar simulations, but initialized as V2, 2 �t � 0� � x2 which is the asymptotic value of
V2, 2: We observe that although tpeak has decreased with this new initial condition, after some
initial time the curves merge and the values of � �u�i ÿ vi �2 � =� �u�i �2 � are almost
independent of the initializations. This is particularly important for model assessments as most
turbulence closures are based on the assumption of dynamic equilibrium.
We now consider both the homogeneous and inhomogeneous dispersed phases. The e�ect of

particle inertia is examined through trajectory plots, and quanti®ed dispersion results are given
by calculating the particles mean-square displacement. In Fig. 10, trajectories are plotted by

Fig. 10. Projection onto the �x 1, x 2�, �x 1, x 3�, and �x 2, x 3� planes of the trajectories of the tracer ¯uid and solid

particles for various particle time constants; (a)±(c) Injection Location 1, (d)±(f) Injection Location 2.
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tracking the instantaneous positions of a single particle as it moves through the ¯ow.
Trajectory plots can be used to analyze various means for particle dispersion such as
centrifugal and inertial mechanisms. The plots also show the particles accelerations and
decelerations in the ¯ow ®eld and the e�ect of increased drag on larger particles. For the
trajectory results presented, particle time constants ranging from 0.112 to 1.126 are used, with
the injection mean velocity calculated from the mean velocity gradients indicated in Tables 1±3
(the initial ¯uctuating velocity is taken equal to that of the local ¯uid). For comparison, the
trajectory of the ¯uid particle is also provided. Injection was simulated for two di�erent
locations: Location 1 �X inj

1 � p=4, X inj
2 � p=4, X inj

3 � p� and Location 2 �X inj
1 � p=4, X inj

2 � 0:01,
X inj

3 �p�:
Fig. 10 shows the trajectories projected onto the �x1, x2�, �x1, x3�, and �x3, x2�-planes. As

indicated in the ®gure, the particles are strongly in¯uenced by their inertia and injection
location. In general, small particles �tp=tk � 0:5� follow the ¯uid particles relatively closely,
whereas the large particles �tp=tk > 1:5� remain almost una�ected by the turbulence and their
motion seems to be dominated by their mean velocity. For heavy particles injected from
Location 2, an oscillatory behavior in x2-direction can be observed in Fig. 10(d,f) for tp > tpcr

:
For this injection location, the dispersion in x1-direction is consistent with the mean velocities
Ð the mean velocity for heavy particles decreases with tp in x1-direction and for a non-zero
X inj

1 the dispersion is mostly due to the mean motion. In Fig. 10(d,f), we see that the ¯uid and
small solid particles cross the x1-axis, whereas the heavy particles initially tend to move
upwards, before being directed back to the x1-axis for tp > tpcr

: Notice that the heavy particles
have a lower initial momentum due to the low injection velocity assumed in x2-direction,
V̂2�0� � v2 ÿ SX

inj
2 ' v2, and the smaller mean velocity in x1-direction. Therefore, this behavior

of the heavier particles may be associated to the increased drag on them coupled with their
initially imparted low momentum. The medium-size particles �tp=tk � 1� exhibit an interesting
behavior. Their trajectory, although very di�erent from that of the ¯uid particles, is strongly
in¯uenced by the ¯uid turbulence. In fact, depending upon the injection location, they can be
dispersed more than the ¯uid particles. This is the case for particles with tp � 0:225, injected
close to the �x1, x3�-plane, that is at X inj

1 � p=4 and X
inj
2 � 0:01 (Fig. 10d±f).

In order to quantify the dispersion of the particles, the dispersion function (or r.m.s.
displacement) of a solid or ¯uid particle in the xa-direction is calculated from:

Daa�t� �
"
1

N

XN
i�1

�
X̂
�i�
a �t� ÿ X inj

a

�2
#1

2

�5:6�

where N is the total number of particles in the ¯ow ®eld at time t, X̂
�i �
a is the instantaneous

position of particle (i ) at time t, and X inj
a is the injection location of the same particle. Fig. 11

shows the variation of the dispersion function with time for various particle time constants for
an injection location close to the x3-axis �X inj

1 � 0:01, X
inj
2 � 0:01, X

inj
3 � p�: The dispersion

function generally increases with time since the particles disperse increasingly farther from their
injection location. At earlier times, the dispersion seems to be the highest for tp � 0:112,
whereas at longer times the ¯uid particles exhibit the highest amount of dispersion. It is
observed that for long times the dispersion in x1 and x3 directions decreases signi®cantly as
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the inertia increases. The reason is that, as the turbulence ¯uctuations grow in time, it becomes
more di�cult for larger particles to follow the turbulent motions. This is similar to the results
found by Yeh and Lei (1991) in the case of homogeneous turbulent shear ¯ows.

To further investigate the e�ects of the particle inertia and the injection location on
dispersion, in Fig. 12 the value of the dispersion function at the ®nal time, St � 1:38, is plotted

Fig. 11. Dispersion function for ¯uid and solid particles for di�erent particle time constants; particles injected at
X inj

1 � 0:01, X inj
2 � 0:01, and X inj

3 � p:
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versus the particle time constant, normalized with the Kolmogorov time scale, for various
injection locations. For all of the cases shown in Fig. 12, X

inj
3 � p: It is noted that in x1-

direction, the dispersion always decreases with the increase of the particle time constant, and is
larger for X

inj
1 � p=4 than for X

inj
1 � 0:01, which is a direct result of the larger magnitudes of

the instantaneous velocity of the particles with X
inj
1 � p=4 in the x1-direction. The same trend

Fig. 12. E�ect of injection location on dispersion for various particle time constants.
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is observed in x2-direction, that is, the particles disperse more at larger values of X inj
2 :

However, it is observed that, for particles injected away from x3-axis, dispersion in x2-direction
is enhanced for small particle time constant, i.e. tp=tk � 0:5: Fig. 12a also shows an interesting
feature pertaining to the in¯uence of large mean velocity in opposite directions. We see that for
small X

inj
1 , D11 is increased by a larger X

inj
2 (i.e. a larger initial velocity in x2-direction),

whereas for large X
inj
1 an increase in V2�t � 0� results in a decrease in D11: A similar behavior

is observed in Fig. 12b for D22 when X
inj
1 is varied for a constant X

inj
2 : The variation of the

dispersion in x3-direction is somewhat irregular. A decrese in D33 is observed with the increase
of particle inertia but it is noted that for injection locations �X inj

1 , X
inj
2 � � �p=4, 0:01� and

�0:01, p=4� the solid particles with tp=tk � 0:5 disperse more than the ¯uid particles. The e�ect
of the mean motion in increasing particle dispersion in the spanwise direction is clearly
observed by comparing the dispersion for the injection locations �X inj

1 � X
inj
2 � p=4� and

�X inj
1 � X

inj
2 � 0:01�, the former being always larger than the latter. Notice that, it is di�cult to

describe a general trend for the in¯uence of the mean motion on D33:
The important observations pertaining to particle dispersion are that the particles mean

square displacement generally increases with time and that it is a decreasing function of
particle inertia for most cases. If we limit the comparison to the cases with X

inj
1 � X

inj
2 � p=4

and X
inj
1 � X

inj
2 � 0:01, it can be concluded that an increase in the particles mean velocity

increases the particle dispersion function, including the dispersion in x3-direction which
represents the `turbulent' dispersion only. For the dispersion in x1- and x2-directions, it is
observed that an increase in X inj

1 �X inj
2 � results in an increase in D11 �D22�:

6. Summary and concluding remarks

Results obtained by direct numerical simulation (DNS) are used to investigate particle-laden
homogeneous plane strain turbulent ¯ows. An analysis of the averaged equations of motion for
the dispersed phase indicates that there is always a relative mean velocity between the particle
and its surrounding ¯uid. Under the assumption of small particle Reynolds number, the
dispersed phase is shown to be homogeneous and an analytical solution is found for the
particle mean velocity. This allows the calculation of the statistics involving the particle
¯uctuating velocity for cases with small particle time constant. The analytical solution for the
mean velocity of small particles also shows the existence of a critical particle time constant
beyond which the particles follow an oscillatory trajectory about the elongated �x1� axis. For
large particles, the empirical correction added to the drag coe�cient prevents a homogeneous
solution for the dispersed phase. The results generated for large particles are mainly used to
study the dispersion characteristics of the particles.
In the case of homogeneous dispersed phase, the DNS results show that the particle velocity

autocorrelation increases with the increase of the particle time constant in all directions during
the initial times. For longer dispersion times the reverse is observed as the particles are
subjected to the crossing-trajectories e�ect caused by the di�erence in the mean velocities of the
two phases. The particle turbulence kinetic energy increases with the increase of the particle
time constant at early times when the turbulence is decaying. An opposite trend is observed in
the stage of turbulence growth. The dispersed phase shows a stronger anisotropy than the
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carrier phase, with the level of anisotropy increasing with the increase of the particle time
constant. It is observed that the r.m.s. of the particle ¯uctuating velocity in the shortened
direction increases over that of the ¯uid. Also, this r.m.s. velocity component increases with the
increase of the particle time constant which is the opposite to the trend previously observed in
isotropic turbulence but is similar to the theoretical and DNS results for the streamwise
component in turbulent shear ¯ows.
For both homogeneous and inhomogeneous dispersed phases, the trajectories of individual

particles injected from di�erent locations indicate that the small inertia particles closely follow
the ¯uid particles, whereas particles with larger time constants are not signi®cantly in¯uenced
by the turbulence. Particles with time constants of the order of the Kolmogorov time scale
(when not over-in¯uenced by their mean velocity) exhibit trajectories which are very di�erent
from those of the ¯uid particles. A quanti®ed dispersion study indicates that the light particles
disperse more than the high inertia particles, and usually less than the ¯uid particles, in all
three directions. A large injection velocity seems to increase the particles dispersion. In the
strained directions, increasing the injection location component X

inj
i produces a larger

dispersion in the respective xi-direction.
Altough it has not been attempted in this work, the results and the analysis presented here

can be helpful for future model development and assessment. Due to the presence of a mean
relative velocity between the two phases, plane strain particle-laden ¯ows o�er several unique
features which are not feasible via DNS of other ¯ows such as isotropic or homogeneous
shear. These include, the crossing-trajectories (and its accompanying continuity) e�ects (Fig. 4)
and the compressibility of the dispersed phase (Fig. 2). This is while the homogeniety of the
plane strain ¯ow has allowed us to calculate accurate statistics involving the velocity
¯uctuations of the dispersed phase. This feature distinguishes the ¯ow from inhomogeneous
channel ¯ow which has been extensively utilized for DNS of particle-laden ¯ows. Our previous
experience in implementing DNS results for validation of both statistical (Mashayek et al.,
1998) and stochastic (Mashayek, 1999) models indicate that the ability to capture the above
features of particle-laden ¯ows play a signi®cant role in the success of turbulence models and
must be addressed via comparisons in simple ¯ows for which accurate data are available.
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Appendix A

In this appendix we show that � vj
@vi
@x j
�� 0 for a homogeneous dispersed phase. Consider

the change of coordinates: ai � ÿxi: The new velocity ®elds are:

Ĝi � ÿÛi, L̂i � ÿV̂i: �A:1�
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De®ning Gi the (¯uid) average of Ĝi, Li the (particle) average of L̂i, gi � Ĝi ÿ Gi, and
li � L̂i ÿ Li, we have:

Gi, j � @Gi

@aj
� @Ui

@xj
� Ui, j, Li, j � @Li

@aj
� @Vi

@xj
� Vi, j: �A:2�

The mean velocity gradient tensors are the same in the two coordinate systems and thus, the
statistics of the turbulence will be the same. In particular,

� vj
@vi
@xj
��� lj

@li
@aj
� : �A:3�

However, since L̂i � ÿV̂i we also have:

� vj
@vi
@xj
�� ÿ � lj

@li
@aj
� : �A:4�

From (A.3) and (A.4) we conclude:

� vj
@vi
@xj
�� 0: �A:5�

Appendix B

The mean velocity of the dispersed phase can be determined from the solution for xi: The
initial conditions are such that Va�0� � s0a�0�xa�0�: Since x1 6�Z1, we can assume either s01 6�x1 or
s01 6�Z1: If s01 6�x1, then:

V1 �
Z1exp�Z1t� �

s01 ÿ Z1
x1 ÿ s01

x1exp�x1t�

exp�Z1t� �
s01 ÿ Z1
x1 ÿ s01

exp�x1t�
x1, �B:1�

otherwise:

V1 � x1x1: �B:2�
Similarly, if tp < tpcr

and s02 6�x2:

V2 �
Z2exp�Z2t� �

s02 ÿ Z2
x2 ÿ s02

x2exp�x2t�

exp�Z2t� �
s02 ÿ Z2
x2 ÿ s02

exp�x2t�
x2, �B:3�

and for s02 � x2:
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V2 � x2x2: �B:4�
If tp � tpcr

:

V2 �
s02 ÿ

�
s02 �

1

2tp

�
t

2tp

1�
�
s02 �

1

2tp

�
t

x2: �B:5�

When tp > tpcr
we obtain:

V2 �
s02 �

ÿ1
2tpo

ÿ
s02 � 2S

�
tan�ot�

1�
s02 �

1

2tp

o
tan�ot�

x2: �B:6�

For the x3-direction, if s03 6�0:

V3 �
exp

�ÿt
tp

�
1� tps03

s03
ÿ tpexp

�ÿt
tp

�x3, �B:7�

otherwise:

V3 � 0: �B:8�
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